Comparative Analysis of Supervised and Unsupervised Learning Methods for Pattern Classification
Keywords:
Categorization; Grouping; Knowledge Acquisition; Multi-Layer Perceptron; Self-Organizing Map; Guided Learning; Autonomous Learning
Abstract
In the higher learning system, this article compares and contrasts supervised and unsupervised learning approaches to see which is more effective for classifying patterns. Among the most significant uses of machine learning algorithms is classification. Our research shows that, although the supervised learning algorithm, Backpropagation learning with errors, does a great deal of nonlinear real-time assignments, the unsupervised learning algorithm, Kohonen Self-Organizing Map (KSOM), performs very well in our study's classification tasks.
Published
2024-03-25
Section
Research Article
Copyright (c) 2024 International Journal of Innovative Research in Computer and Communication Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.