Growth Performance and Resource Use Efficiency of Maize in Bihar: Economic Perspectives

NASIM AHMAD, DK SINHA, KM SINGH* AND RR MISHRA

Department of Agricultural Economics, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India

ABSTRACT

The present investigation was carried out to estimate growth in area, production and productivity and resource use efficiency of maize in Bihar. During the first period (1970-71 to 2014-15), the compound growth rate (CGR) of area for maize was estimated to be negative (-0.023%), whereas it was observed positive for both production (1.367%) and productivity (1.385%) indicating thereby increase in production growth on account of rise in productivity with the introduction of rabi maize. Technical efficiencies at state level in maize production were found to be 64% for kharif maize and 71% in rabi maize, indicating thereby production changes by 36% and 29% in kharif and rabi maize are possible to increase with the available technology. Allocative mean efficiencies for kharif and rabi maize were calculated 68% and 65%, revealing the fact that farmers could reduce costs by 32% and 35% by using optimum proportions of inputs considering it’s prices while selecting it’s quantities. Further the values of cost efficiency (CE) was computed as 0.44 and 0.46 for both kharif and rabi maize, respectively. This emphasizes that this provides ample scope to reduce the cost of production by 56% and 54% in both seasons of maize through efficient use of available resources (at least cost) to achieve the objective for optimization of income.

INTRODUCTION

Maize (Zea mays L.) is an important cereal crop in the world after wheat and rice. The importance of maize lies in its wide industrial uses besides serving as human food and animal feed and fodder. It is the most versatile crop with wider adaptability to varied agro-climatic regions and has highest genetic yield potential among the food grain crops. As the demand for maize is growing globally due to its multiple uses in food, feed and industry sectors, we need to produce more from a given level of resources. New production technologies offer great promise for increasing productivity to meet the growing demands of world consumers. For decades, corn growers have worked for continuous improvement and greater efficiency (Neupane et al., 2011). It is nutritious for human consumption because of the presence of carbohydrates, fats, protein, some of vitamins and minerals. That is why; maize has now been placed under nutria-cereal group (Shivran et al., 2011 and Haris et al., 2015). India is the sixth largest producer of maize in the world contributing 2.29% in total maize production worldwide. The compound growth rate (CGR) of area for maize was estimated to be negative (-0.023%), whereas it was observed positive for both production (1.367%) and productivity (1.385%) indicating thereby increase in production growth on account of rise in productivity with the introduction of rabi maize. Technical efficiencies at state level in maize production were found to be 64% for kharif maize and 71% in rabi maize, indicating thereby production changes by 36% and 29% in kharif and rabi maize are possible to increase with the available technology. Allocative mean efficiencies for kharif and rabi maize were calculated 68% and 65%, revealing the fact that farmers could reduce costs by 32% and 35% by using optimum proportions of inputs considering it’s prices while selecting it’s quantities. Further the values of cost efficiency (CE) was computed as 0.44 and 0.46 for both kharif and rabi maize, respectively. This emphasizes that this provides ample scope to reduce the cost of production by 56% and 54% in both seasons of maize through efficient use of available resources (at least cost) to achieve the objective for optimization of income.

Keywords: Maize, Resource Use Efficiency, CGR, Cost Efficiency, Technical Efficiency, Bihar

*Corresponding Author Email: m.krishna.singh@gmail.com
Data pertaining to area, production and productivity of maize was collected from various issues of Economic Survey of Bihar and Bihar through figures from 1970-71 to 2014-15 for the period of 45 years. Growth rates of area, production and productivity of maize were calculated for every 15 years and 45 years as a whole by using the following functions

\[y = a + bt + e \]

where,
- \(t \) is the time in years, independent variable
- \(y \) is dependent variable in terms of area, production and productivity
- \(a \) is constant
- \(b \) is regression coefficient and
- \(e \) is random error

The linear growth rate is calculated by the formula

\[\text{Linear growth rate (LGR)} = \frac{(b/\bar{y}) \times 100}{(b/\bar{y}) \times 100} \]

or \(\log r = \log a + t \log b \)

where,
- \(t \) is the time in years, independent variable
- \(y \) is dependent variable in terms of area, production and productivity
- \(a \) is constant
- \(b \) is regression coefficient

\(\text{CGR} (\%) = (\text{antilog}(b)-1) \times 100 \)

The significance of the growth rates was tested by using student’s ‘t’ test

\[t = r/SE(r) \text{ with (n-2) degree of freedom} \]

where,
- \(r \) is the Compound growth rate
- \(n \) is the number of years under study
- \(SE(r) \) is the standard error of growth rate.

Resource Use Efficiency

For calculating resource use efficiency plot level data of Comprehensive Cost of Cultivation Scheme for the block period 2008-09 to 2010-11 collected from 450 farmers from 45 clusters in Bihar were used. DEA is a well established approach for measuring the relative efficiency of peer decision making units (DMUs) that have multiple inputs and outputs, proposed by Charnes et al. (1978) and extended by Banker et al. (1984). Performance analysis is a relative concept (Coelli et al., 1998). It relates to production analysis and measures the production with a ratio.

Efficiency of resource use which can be defined as the ability to derive maximum output per unit of resource is the key to effectively addressing the challenges of achieving food security. There are various techniques and methods to examine resource use efficiency such as Data Envelopment Analysis (DEA), Stochastic Frontier (SF) production function etc. In the present study, DEA method has been used which is given below:

Data Envelopment Analysis (DEA) approach

Resource use efficiency under different crop production is estimated on the basis of DEA. DEA is a Linear Programming technique for constructing a non-parametric piece wise linear envelop to a set of observed output and input data. Efficiency is defined as a measure of how efficiently inputs are employed to produce a given level of output producing same level of output, with lower level of inputs or more output with the same level of inputs means higher level of efficiency. The technique of DEA has been used to find the relative efficiency score of each farm in relation to farms with minimum input output ratio for all inputs. The score of the most efficient farms being one, the score of each farm will lie between zero and one. In the present study the DEA approach has been used to analyze the data for optimizing the performance measure of each production unit and determining the most preferable ones. The information obtained included the amount of input costs which incurred during crop production such as human labour, fertilizer seed etc. and the yield as an output.

In order to specify the mathematical formulation of model, we assume that we have \(K \) farmers Decision Making Units (DMU) using \(N \) inputs to produce \(M \) outputs. Inputs are denoted by \(x_ik \) \((i=1,2,\ldots,n)\) and output are represented by \(Y_k \) \((i=1,2,3,\ldots,m)\) for each farmer \(k \) \((k=1,2,\ldots,K)\). The technical efficiency (TE) of the farmers can be measured as:

\[\text{TE} = \frac{\text{output}}{\text{input}} \]

The above equation indicates that the technical efficiency measure of a farmer cannot exceed one, and the input and output weights are positive. The weights are selected in such a way that the farmer maximizes its own technical efficiency which is executed separately. To select optimal weights, the following linear programming model is specified:

\[\text{Min TE} \]

subject to

\[\sum_{i=1}^{m} w_i Y_k - \sum_{j=1}^{n} u_j x_{jk} + w = 0 \]

Where, \(w_i, u_j \geq 0 \)

The above model shows TE under constant returns to scale (CRS) with an assumption if \(w=0 \) and it changes into variable returns to scale (VRS) if \(w \) is used unconstrained. In the first case it leads to technical efficiency (TE) and in second case pure technical efficiency (PTE) is estimated. Here the analysis is concerned with the first case.

Technical Efficiency (TE): It can be expressed generally as the ratio of sum of the weighted outputs to sum of weighted inputs. The value of technical efficiency varies between zero and one; where a value of one implies that the DMU is the best performer located on production frontier and has no reduction potential. Any value of TE lower than one indicates that DMU uses inputs inefficiently.

Cost or Economic Efficiency (CE): one can measure both technical and allocative efficiencies to verify the behavioral
objectives such as cost minimization or revenue maximization.

Cost minimization DEA is expressed as
\[
\text{Min} \ y \ = w^T X^* \ y^*
\]
Subject to \(-y + Y \geq 0, X^* - X Y \geq 0, Y \geq 0,\)

Where \(w, X^*, Y, y\) is a vector of input prices, the \(k^\text{th}\) farmer and input quantities for the \(k^\text{th}\) farmer, given the input prices \(w_k\) and the output level \(y_k\).

Total cost efficiency (CE) or economic efficiency of the \(k^\text{th}\) farmer can be calculated as
\[
CE = w X^* / w X
\]
That is the ratio of minimum cost to the observed cost.

While the allocative efficiency (AE) is calculated as the ratio of cost efficiency to technical efficiency
\[
AE = CE / TE
\]

DEA is well established approach for measuring the relative efficiency of decision making units (DMUs) that have multiple inputs and outputs. We have used this method to investigate the technical efficiency (TE), allocative efficiency (AE) and cost efficiency (CE) or economic efficiency (EE). In this study, we use input-oriented efficiency measures because they reflect local reality where a decrease in scarce resources (inputs) makes use more relevant.

Table 1: Percentage share of maize in area under total cereal and GCA in TE-2003 and TE-2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone-I</td>
<td>279</td>
<td>279</td>
<td>190</td>
<td>280</td>
<td>125</td>
<td>101</td>
<td>609</td>
<td>681</td>
</tr>
<tr>
<td>Zone-II</td>
<td>10.86</td>
<td>10.86</td>
<td>13.60</td>
<td>21.49</td>
<td>5.29</td>
<td>4.51</td>
<td>9.57</td>
<td>11.30</td>
</tr>
</tbody>
</table>

Growth trends in Maize

The trend of growth in area, production and productivity in Bihar during 1970-71 to 2014-15 is presented in Table 2. In Bihar, the average area under maize during 1970-71 to 2014-15 was 636.78 hectare. The coefficient of variation during this period was found to be 10.09% and linear and compound growth rates were recorded to be 0.072 percent and 0.023 percent per annum respectively. The area of maize exhibited a negative growth trend in state and it was found non-significant in both the cases linear and compound growth rates. The negative growth might be due to decline in kharif maize area due to diseases and pest attack as well as high cost of irrigation due to erratic rainfall. The average production of maize was found to be 1236.11 thousand tones with a coefficient of variation 47.88%. The linear and compound growth rates were computed to be 3.22 percent and 1.367 percent annually and these were found significant at 5% level of probability. The higher growth in maize production might be due to adoption of new technology i.e. high yielding varieties of maize including improved package of practices. In case of productivity, the average productivity was recorded 1931.52 kg/ha with a coefficient of variation 43.54%. The productivity of maize could increase at 1.385% compound growth rates per annum. The enhanced productivity may be attributed to adoption of new technology as mentioned above.

The whole investigation period consisting of 45 years was divided into three periods 1970-71 to 1984-85, 1985-86 to 1999-2000 and 2001-02 to 2014-15 each of 15 years. The growth rates for each period under investigation were worked out. During the first 15 years coefficient of variation (CV) for area was found to be 9.54% and the area under the crop declined as it was evidenced by negative compound growth rate (0.35%) but on the other hand, the growth rates for production and productivity were found to positive i.e. 0.25% and 1.35% for linear growth and 0.24% and 0.59% for compound growth, respectively.

During the second period (1985-85 to 1999-2000) the effect of technical change on area of maize was comparatively observed as it was reflected in positive growth rates being 0.62 CGR per annum with moderately stable CV(7.37%). The growth pattern in production and productivity were also

RESULTS AND DISCUSSION

The percentage share of area under maize in total cereals and GCA as presented in Table 1 revealed that the share of area under maize to total cereals in Bihar has increased from 9.57% (TE-2003) to 11.30% (TE-2013). The zone-wise analysis further indicated that there has been sharp rise in the area share of maize in total cereals crops from 13.60 to 21.49 during the period under study in zone-II which is popular for maize production. The percentage share of maize in total cereals has remained by and large constant in zone-I and slightly showed declined in zone-III during the period of investigation.
Table 2: Growth rates of area, production and productivity of maize in Bihar

<table>
<thead>
<tr>
<th>Period</th>
<th>Area</th>
<th>Production</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LGR</td>
<td>CGR</td>
<td>CV</td>
</tr>
<tr>
<td>Period-I</td>
<td>-0.82</td>
<td>-0.35</td>
<td>9.54</td>
</tr>
<tr>
<td>(1970-71 to 1984-85)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period-II</td>
<td>1.39*</td>
<td>0.62*</td>
<td>7.37</td>
</tr>
<tr>
<td>(1985-86 to 1999-2000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period-III</td>
<td>1.20*</td>
<td>0.52*</td>
<td>6.09</td>
</tr>
<tr>
<td>(2001-02 to 2014-15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Period</td>
<td>-0.072</td>
<td>-0.023</td>
<td>10.09</td>
</tr>
<tr>
<td>(1970-71 to 2014-15)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at 5% level of probability

LGR = Linear Growth Rate, CGR = Compound Growth Rate, CV = Coefficient of variation

observed to be positive and statistically significant. The production jumped up 1.91% CGR per annum whereas the productivity rose at 1.26% CGR during the period under study. The reason for impressive growth in area, production and productivity of maize during this period may probably be assigned to the fact that technological changes in the crop production technology and increasing demand of maize with better returns. During the third period (2001-02 to 2014-15), the trends in area, production and productivity were also observed positive in both the growth models, linear and compound. In this period high yielding varieties of maize particularly rabi maize, and high demand of maize for making different processed items like poultry feed, corn flex etc fetching higher profit may be the causes for rising trend in area, production and productivity of the crop in this period.

Growth Performance of Irrigated Area under Maize

Growth rates analysis of irrigated area of maize as presented in Table 3 revealed that for the state as whole the compound growth rate of irrigated area under maize has been observed 1.20% during the period from 2001-02 to 2014-15. Further examination of zone-wise analysis showed the fact that the growth in irrigated area of maize has been found to be comparatively larger in zone-III (2.87%), followed by zone-II (1.12%) and least growth in zone-I (0.46%) during the period under investigation. The coefficient of variation (CV) revealed the similar trend in different zones as indicated like that of zonal growth of irrigated area under maize.

Table 3: Growth rate of irrigated area under maize in Bihar during 2001-02 to 2014-15

<table>
<thead>
<tr>
<th>Particulars</th>
<th>LGR</th>
<th>CGR</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone -I</td>
<td>0.95</td>
<td>0.46</td>
<td>10.92</td>
</tr>
<tr>
<td>Zone -II</td>
<td>2.65</td>
<td>1.12</td>
<td>13.20</td>
</tr>
<tr>
<td>Zone -III</td>
<td>4.77</td>
<td>2.87</td>
<td>24.12</td>
</tr>
<tr>
<td>Bihar</td>
<td>2.76</td>
<td>1.20</td>
<td>11.09</td>
</tr>
</tbody>
</table>

Resource use efficiency

Summary statistics for the measures of technical, allocative and economic or cost efficiencies are presented in Table 4. Technical efficiencies at state level in maize production were found to be 64% for kharif maize and 71% in rabi maize, indicating thereby production changes by 36% and 29% in kharif and rabi maize are possible to increase with the available technology. Allocative mean efficiencies for kharif and rabi maize were calculated 68% and 65% indicating that farmers could reduce costs by 32% and 35% by using optimum proportions of input considering it's prices while selecting it's quantities. The combined effect of TE and AE showed the average CE score 44% and 46% for kharif and rabi maize, this means that according to Farrell’s principle, the farmers can potentially reduce their overall cost of maize production on an average by 56% and 54% to produce the existing level of output at least cost. However, farmer’s objective and skill might influence their potential and desire to achieve overall CE or EE. Perusal of zone-wise analysis indicated, technical inefficiency of 16% for kharif maize and 36% for rabi maize.

Cost efficiency (CE) of kharif and rabi maize in zone-I provides guidance to farmers that there is scope to reduce inefficiencies in input usage in order to produce maize at better returns. During the third period (2001-02 to 2014-15), production technology and increasing demand of maize with better returns. During the third period (2001-02 to 2014-15), the trends in area, production and productivity were also observed positive in both the growth models, linear and compound. In this period high yielding varieties of maize particularly rabi maize, and high demand of maize for making different processed items like poultry feed, corn flex etc fetching higher profit may be the causes for rising trend in area, production and productivity of the crop in this period.

Table 4: Zone-wise resource use efficiency of maize in Bihar, TE 2010-11

<table>
<thead>
<tr>
<th>Crop</th>
<th>Sample Size (n)</th>
<th>Technical Efficiency (TE)</th>
<th>Allocative Efficiency (AE)</th>
<th>Cost Efficiency (CE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agro-climatic Zone-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize (Kharif)</td>
<td>69</td>
<td>0.84</td>
<td>0.74</td>
<td>0.63</td>
</tr>
<tr>
<td>Maize (Rabi)</td>
<td>21</td>
<td>0.64</td>
<td>0.70</td>
<td>0.45</td>
</tr>
<tr>
<td>Agro-climatic Zone-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize (Rabi)</td>
<td>24</td>
<td>0.76</td>
<td>0.91</td>
<td>0.70</td>
</tr>
<tr>
<td>Agro-climatic Zone-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize (Kharif)</td>
<td>17</td>
<td>0.88</td>
<td>0.84</td>
<td>0.74</td>
</tr>
<tr>
<td>Maize (Rabi)</td>
<td>21</td>
<td>0.87</td>
<td>0.52</td>
<td>0.45</td>
</tr>
<tr>
<td>Bihar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize (Kharif)</td>
<td>86</td>
<td>0.64</td>
<td>0.68</td>
<td>0.44</td>
</tr>
<tr>
<td>Maize (Rabi)</td>
<td>66</td>
<td>0.71</td>
<td>0.65</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Source: Calculated by author.

Note: Variables used: working hours of human labour/ha, quantity of NPK used/ha, quantity seed/ha and ground water draft (cum/ha) with their unit prices and output produced per hectare.
cost by 37% and 55% producing kharif and rabi maize to arrive at least cost point. Farmers of zone-II of Bihar are well known for high production of rabi maize, but still they have technical inefficiency by 24% and AE by 9%. The value of cost efficiency (CE) emphasizes the reduction of cost by 30% to produce exiting level of output at least cost. A perusal table of reflected that the farmers of zone-III are more technically sound as compared to zone-I, zone-II and thus even at state level too, the TE was observed 88% and 87% for kharif and rabi maize but AE is very less as compared to other zones i.e. 52% for rabi maize. The estimated value of cost efficiency revealed the fact there is ample scope to reduce the cost of production by 55% to achieve the objective of optimization of income.

CONCLUSION
The trends in area, production and productivity were also observed positive in both the growth models, linear and compound. Technical efficiencies at state level in maize production were found to be 64% in kharif maize and 71% in rabi maize, indicating thereby changes in production in kharif and rabi maize are possible by 36% and 29% respectively with the available technology. Allocative mean efficiencies for kharif and rabi maize were calculated 68% and 65%, indicating that farmers could reduce costs by 32% and 35% respectively by using optimum proportions of inputs considering it’s prices while selecting it’s quantities. The estimated value of cost efficiency revealed the fact there is ample scope to reduce the cost of production by 55% through efficient use of resources to achieve the objective of optimization of income.

Acknowledgment
The paper is based on Report of ICAR-Social Science Network Project “Regional Crop Planning for Improving Resource Use Efficiency and Sustainability funded by NIAP, New Delhi.

REFERENCES

Citation: