Some Properties of Pseudo-Differential Operators Involving Fractional Fourier Transform

Anuj Kumar ${ }^{1}$ and Manmohan Singh Chauhan ${ }^{2}$
${ }^{1}$ Department of Mathematics
UEC, Ujjain - 456010, M.P. (India)
${ }^{2}$ Department of Mathematics
SRMS-CET, Bareilly-243202, U.P. (India)
Email: anujk743@gmail.com, mchauhanbhu@gmail.com

DOI: 10.29218/srmsjoms.v4i01.15951

Keywords:
Fractional Fourier transform, Pseudo
Differential operator, Schwartz space.

1. Introduction

The concept of pseudo-differential operators was originated by Kohn-Nirenberg [1], Hörmander [2, 3] and others. Pseudo-differential operators on $S(\mathbb{R})$ have been discussed in association with fractional Fourier transform by Pathak et al. [4], Prasad and Kumar [5]. In this connection, pseudo-differential operators of infinite order involving fractional Fourier transform on $W_{M}\left(\mathbb{R}^{n}\right)$ and $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ have been studied by Upadhyay et al. [6], Upadhyay and Dubey [7] respectively. The main aim of this paper is to discuss the some properties of pseudo-differential operators involving fractional Fourier transform on Schwartz space $S\left(\mathbb{R}^{n}\right)$, where \mathbb{R}^{n} is usual Euclidean space. If $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are the elements of \mathbb{R}^{n}.

Then the inner product of x and y is defined by

$$
\begin{equation*}
\langle x, y\rangle=x \cdot y=\sum_{j=1}^{n} x_{j} \cdot y_{j} \tag{1}
\end{equation*}
$$

and the norm of x is defined by

$$
\begin{equation*}
|x|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{\frac{1}{2}}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

If $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ is an n-tuple of non-negative integers, then β is called a multi-indices. We write, $|\beta|=\beta_{1}+\cdots+$ β_{n} and for $x \in \mathbb{R}^{n}, x^{\beta}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}^{\beta_{n}}$. The n-dimensional fractional Fourier transform with parameter α of $\phi(x)$ on $x \in \mathbb{R}^{n}$ is denoted by $\left(F_{\alpha} \phi\right)(\xi)=\hat{\phi}_{\alpha}(\xi)[8,6]$ and defined as

$$
\begin{equation*}
\hat{\phi}_{\alpha}(\xi)=\left(F_{\alpha} \phi\right)(\xi)=\int_{\mathbb{R}^{n}} K_{\alpha}(x, \xi) \phi(x) d x, \xi \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

where

$$
K_{\alpha}(x, \xi)=\left\{\begin{array}{ll}
C_{\alpha} e^{\frac{i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}-i\langle x, \xi\rangle \csc \alpha} & \text { if } \alpha \neq n \pi \\
\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-i\langle x, \xi\rangle} & \text { if } \alpha=\frac{\pi}{2}
\end{array} \quad \forall \mathrm{n} \in \mathbb{Z}\right.
$$

and

$$
C_{\alpha}=(2 \pi i \sin \alpha)^{-\frac{n}{2}} e^{\frac{i n \alpha}{2}}
$$

The corresponding inversion formula is given by

$$
\begin{equation*}
\phi(x)=\int_{\mathbb{R}^{n}} \overline{K_{\alpha}(x, \xi)} \hat{\phi}_{\alpha}(\xi) d \xi, x \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

where the kernel

$$
\overline{K_{\alpha}(x, \xi)}=C_{\alpha}^{\prime} e^{\frac{-i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}+i\langle x, \xi\rangle \csc \alpha}
$$

and

$$
\begin{equation*}
C_{\alpha}^{\prime}=\frac{(2 \pi i \sin \alpha)^{\frac{n}{2}}}{(2 \pi \sin \alpha)^{n}} e^{\frac{-i n \alpha}{2}} \tag{5}
\end{equation*}
$$

Definition 1.1 The Schwartz space $S\left(\mathbb{R}^{n}\right)$ is the set of all $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\gamma_{\mu, v}(\phi)=\sup _{x \in \mathbb{R}^{n}}\left|x^{\mu} D^{v} \phi(x)\right|<\infty, \tag{6}
\end{equation*}
$$

for all multi-indices μ and v.
Definition 1.2 Let $m \in \mathbb{R}$. Then we define the symbol class S^{m} to be the space of all $\theta(x, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that for any two multi-indices μ and v, there is a positive constant $C_{\mu, v}$ depending upon μ and v such that

$$
\begin{equation*}
\left|\left(D_{x}^{\mu} D_{\xi}^{v}\right)(x, \xi)\right| \leq C_{\mu, v}(1+|\xi|)^{m-|v|}, \quad \forall x, \xi \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

Definition 1.3 Let $\theta(x, \xi)$ be a symbol belonging to S^{m}, then the pseudodifferential operator $A_{\theta, \alpha}$ associated with $\theta(x, \xi)$ is defined as

$$
\begin{equation*}
\left(A_{\theta, \alpha} \phi\right)(x)=\int_{\mathbb{R}^{n}} \overline{K_{\alpha}(x, \xi)} \theta(x, \xi) \hat{\phi}_{\alpha}(\xi) d \xi, \phi \in S\left(\mathbb{R}^{n}\right) \tag{8}
\end{equation*}
$$

where $\hat{\phi}_{\alpha}(\xi)$ is the fractional Fourier transform of $\phi(x)$, defined by (3), and

$$
\begin{equation*}
\overline{K_{\alpha}(x, \xi)}=C_{\alpha}^{\prime} e^{\frac{-i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}+i\langle x, \xi\rangle \csc \alpha}, \tag{9}
\end{equation*}
$$

where C_{α}^{\prime} is defined by (5).

2. Pseudo-Differential Operators Involving Fractional Fourier Transform

In this section, some properties of pseudo-differential operator associated with fractional Fourier transform defined by (8) on $S\left(\mathbb{R}^{n}\right)$ are discussed.

Theorem 2.1 Let $\theta(x, \xi) \in S^{m}$, where $m \in \mathbb{R}$. Then $A_{\theta, \alpha}$ maps $S\left(\mathbb{R}^{n}\right)$ into itself.
Proof. Let $\phi \in S\left(\mathbb{R}^{n}\right)$. Then for any two multi-indices μ and v, we need only prove that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}}\left|x^{\mu} D_{x}^{v}\left(A_{\theta, \alpha} \phi\right)(x)\right|<\infty \tag{10}
\end{equation*}
$$

Proof of the above theorem follows from the facts of Pathak et. al. [4, Theorem 4.1] and Wong [9, pp. 31-32].
Theorem 2.2 Let $\theta(\xi) \in C^{k}\left(\mathbb{R}^{n}\right), k>\frac{n}{2}$, be such that there is a positive constant $C_{\beta, n}$ depending on β and n only, such that

$$
\begin{equation*}
\left|\left(D_{\xi}^{\beta} \theta\right)(\xi)\right| \leq C_{\beta, n}(1+|\xi|)^{-\beta} \tag{11}
\end{equation*}
$$

for multi-indices β with $|\beta| \leq k$. Then for $1 \leq p<\infty$, there exists a positive constant $B_{\alpha, \beta, n}^{\prime}$ depending on α, β and n only, we have

$$
\begin{equation*}
\left\|\left(A_{\theta, \alpha} \phi\right)(x)\right\|_{p} \leq B_{\alpha, \beta, n}^{\prime}\|\phi(x)\|_{p} \forall \phi(x) \in S\left(\mathbb{R}^{n}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(A_{\theta, \alpha} \phi\right)(x)=C_{\alpha}^{\prime} \int_{\mathbb{R}^{n}} e^{\frac{-i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}+i\langle x, \xi\rangle \csc \alpha} \theta(\xi) \hat{\phi}_{\alpha}(\xi) d \xi \tag{13}
\end{equation*}
$$

Proof. From (13, we can write

$$
\begin{equation*}
\left(A_{\theta, \alpha} \phi\right)(x)=F_{\alpha}^{-1}\left[\theta(\xi) \hat{\phi}_{\alpha}(\xi)\right](x) \tag{14}
\end{equation*}
$$

Now we assume that

$$
F_{\alpha}^{-1}\left[\theta(\xi) \hat{\phi}_{\alpha}(\xi)\right](x)=(f * g)(x)
$$

Then,

$$
\begin{aligned}
\theta(\xi) \hat{\phi}_{\alpha}(\xi) & =F_{\alpha}[(f * g)(x)](\xi) \\
& =C_{\alpha} \int_{\mathbb{R}^{n}} e^{\frac{i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}-i\langle x, \xi\rangle \csc \alpha}(f * g)(x) d x
\end{aligned}
$$

From the arguments of [7, pp. 121, 122], we obtain

$$
\begin{equation*}
\theta(\xi) \hat{\phi}_{\alpha}(\xi)=\frac{1}{c_{\alpha}} \times e^{\frac{-i|\xi|^{2} \cot x}{2}} \hat{f}_{\alpha}(\xi) \hat{g}_{\alpha}(\xi) \tag{15}
\end{equation*}
$$

From (15), we get

$$
\begin{equation*}
\theta(\xi)=\frac{1}{c_{\alpha}} \times e^{\frac{-i|\xi|^{2} \cot \alpha}{2}} \hat{f}_{\alpha}(\xi), \quad \hat{\phi}_{\alpha}(\xi)=\hat{g}_{\alpha}(\xi) \tag{16}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f(x)=C_{\alpha} F_{\alpha}^{-1}\left[e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right](x), \quad g(x)=\phi(x) \tag{17}
\end{equation*}
$$

Thus, the (14) gives

$$
\begin{equation*}
\left(A_{\theta, \alpha} \phi\right)(x)=\left(C_{\alpha} F_{\alpha}^{-1}\left[e^{\frac{i \xi| |^{2} \cot \alpha}{2}} \theta(\xi)\right] * \phi\right)(x) \tag{18}
\end{equation*}
$$

Using convolution property $\|f * \phi\|_{p} \leq\|f\|_{1}\|\phi\|_{p}$ for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\phi \in L_{p}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{align*}
\left\|\left(A_{\theta, \alpha} \phi\right)(x)\right\|_{p} & =\left\|\left(C_{\alpha} F_{\alpha}^{-1}\left[e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right] * \phi\right)(x)\right\|_{p} \\
& \leq\left\|C_{\alpha} F_{\alpha}^{-1}\left[e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right](x)\right\|_{1}\|\phi(x)\|_{p} \tag{19}
\end{align*}
$$

Now, we shall prove that

$$
\begin{equation*}
C_{\alpha} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x) \in L^{1}\left(\mathbb{R}^{n}\right) \tag{20}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x) & =\frac{c_{\alpha}^{\prime}}{c_{\alpha}} \int_{\mathbb{R}^{n}} e^{\frac{-i\left(|x|^{2}+|\xi|^{2}\right) \cot \alpha}{2}+i\langle x, \xi\rangle \csc \alpha} e^{\frac{i|\xi|^{2} \cot x}{2}} \theta(\xi) d \xi \\
& =\frac{c_{\alpha}^{\prime}}{c_{\alpha}} \int_{\mathbb{R}^{n}} e^{\frac{-i|x|^{2} \cot \alpha}{2}+i\langle x, \xi\rangle \csc \alpha} \theta(\xi) d \xi
\end{aligned}
$$

Then

$$
x^{\beta} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)=\frac{C_{\alpha}^{\prime}}{C_{\alpha}}(i \csc \alpha)^{-|\beta|} e^{\frac{-i|x|^{2} \cot \alpha}{2}} \int_{\mathbb{R}^{n}} D_{\xi}^{\beta}\left(e^{i\langle x, \xi\rangle \csc \alpha}\right) \theta(\xi) d \xi
$$

By using the parts of integration, we get

$$
x^{\beta} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)=\frac{C_{\alpha}^{\prime}}{C_{\alpha}}(-1)^{|\beta|}(i \csc \alpha)^{-|\beta|} e^{\frac{-i|x|^{2} \cot \alpha}{2}} \int_{\mathbb{R}^{n}}\left(e^{i\langle x, \xi\rangle \csc \alpha}\right)\left(D_{\xi}^{\beta} \theta\right)(\xi) d \xi
$$

Therefore,

$$
\left|x^{\beta} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)\right| \leq\left|\frac{C_{\alpha}^{\prime}}{C_{\alpha}}(\csc \alpha)^{-|\beta|}\right| \int_{\mathbb{R}^{n}}\left|\left(e^{i\langle x, \xi\rangle \csc \alpha}\right)\right|\left|\left(D_{\xi}^{\beta} \theta\right)(\xi)\right| d \xi
$$

Using (11), we have

$$
\left|x^{\beta} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)\right| \leq\left|\frac{C_{\alpha}^{\prime}}{C_{\alpha}}(\csc \alpha)^{-|\beta|}\right| C_{\beta, n} \int_{\mathbb{R}^{n}}(1+|\xi|)^{-|\beta|} d \xi
$$

Thus the last integral is convergent for sufficiently large β, then we get

$$
\left|x^{\beta} F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)\right| \leq\left|\frac{C_{\alpha}^{\prime}}{C_{\alpha}}(\csc \alpha)^{-|\beta|}\right| C_{\beta, n} C_{\beta}
$$

Hence, we have

$$
\left|F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)\right| \leq C_{\beta, n, \csc \alpha}(1+|x|)^{-|\beta|}
$$

Then,

$$
\begin{aligned}
\left\|F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x)\right\|_{1} & \leq C_{\beta, n, \csc \alpha}\left\|(1+|x|)^{-|\beta|}\right\|_{1} \\
& <\infty
\end{aligned}
$$

Therefore,

$$
F_{\alpha}^{-1}\left(e^{\frac{i|\xi|^{2} \cot \alpha}{2}} \theta(\xi)\right)(x) \in L^{1}\left(\mathbb{R}^{n}\right)
$$

From (19), we get

$$
\begin{aligned}
\left\|\left(A_{\theta, \alpha} \phi\right)(x)\right\|_{p} & \leq C_{\beta, n, \csc \alpha}\left\|(1+|x|)^{-|\beta|}\right\|_{1}\|\phi(x)\|_{p} \\
& \leq B_{\alpha, \beta, n}^{\prime}\|\phi(x)\|_{p}, \text { for }(x) \in S\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

A similar theorem has been studied by Upadhyay et al. [10] on $W_{M}\left(\mathbb{R}^{n}\right)$ space by using Fourier transform.
Example 2.1 Consider a generalized differential operator, which is defined by $\triangle_{x}^{s}=\triangle_{x_{1}}^{s_{1}} \cdots \triangle_{x_{n}}^{s_{n}}$, where $s \in \mathbb{Z}_{+}^{n}, x \in$ \mathbb{R}^{n} and for each $j=1,2, \cdots n$, we have

$$
\triangle_{x_{j}}^{s_{j}}=\left(-i \frac{\partial}{\partial x_{j}}+x_{j} \cot \alpha\right)^{s_{j}}
$$

Let $\phi \in S\left(\mathbb{R}^{n}\right)$, then using (4) we have

$$
\begin{aligned}
\triangle_{x}^{s} \phi(x) & =\triangle_{x}^{s} \int_{\mathbb{R}^{n}} \overline{K_{\alpha}(x, \xi)} \hat{\phi}_{\alpha}(\xi) d \xi, \quad \forall \xi \in \mathbb{R}^{n} \\
& =\left(-i \frac{\partial}{\partial x}+x \cot \alpha\right)^{s} C_{\alpha}^{\prime} \int_{\mathbb{R}^{n}} e^{\frac{-i\left(|x|^{2}+|\xi|^{2}\right) \cot x}{2}+i\langle x, \xi\rangle \csc \alpha} \hat{\phi}_{\alpha}(\xi) d \xi \\
& =\int_{\mathbb{R}^{n}} \overline{K_{\alpha}(x, \xi)}(\xi \csc \alpha)^{s} \hat{\phi}_{\alpha}(\xi) d \xi .
\end{aligned}
$$

Since $(\xi \csc \alpha)^{s} \in S^{m}$ for $m=|s|=s_{1}+\cdots s_{n}$ where $m \in \mathbb{Z}_{+}$. Hence generalised differential operator \triangle_{x}^{s} is a pseudo-differential operator with symbol $(\xi \csc \alpha)^{s}$ in the sense of fractional Fourier transform.

References

[1] J.J. Kohn and N. Nirenberg, "On the algebra of pseudo-differential operators," Comm. Pure Appl. Math 18, 269305, 1965.
[2] L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag Berlin Heidelberg, New York, 1976.
[3] L. Hörmander, "Linear Partial Differential Operators," Actes, Congres intern. math. Tome 1, p. 121 à 133, 1970.
[4] R.S. Pathak, A. Prasad and M. Kumar, "Fractional Fourier transform of tempered distributions and generalized pseudo-differential operators," Journal of Pseudo-Differential Operators and Applications 3, 239-254, 2012.
[5] A. Prasad and M. Kumar, "Product of two generalized pseudo-differential operators involving fractional Fourier transform," Journal of Pseudo-Differential Operators and Applications, 2, 355-365, 2011.
[6] S.K. Upadhyay, A. Kumar and J.K. Dubey, "Characterization of spaces of type W and pseudo-differential operators of infinite order involving fractional Fourier transform, Journal of Pseudo-Differential Operators and Applications, 5(2), pp. 215-230, 2014.
[7] S.K. Upadhyay and J.K. Dubey, "Pseudo-differential operators of infinite order on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$-space involving fractional Fourier transform," Journal of Pseudo-Differential Operators and Applications, 6, pp. 113-133, 2015.
[8] H. De Bie, N. De Schepper, "Fractional Fourier transforms of hyper complex signals," SIVip, 6, 381-388, 2012.
[9] M.W. Wong, "An introduction to pseudo-differential operators" 3rd edn. World Scientific, Singapore, 2014.
[10] S.K. Upadhyay, R.N. Yadav and L. Debnath, "Infinite pseudo-differential operators on $W_{M}\left(\mathbb{R}^{n}\right)$ space" Analysis, International mathematical journal of analysis and its applications, 32, pp. 163-178, 2012.

Received Date: 12 April 2019
Revised Date: 13 July 2019
Published Date: 18 November 2019

